Game Theory and the Self-Interested Nash Equilibrium against the Altruistic Berge Equilibrium in the Framework of the Ethical Perspective

Authors

1 Department of Economics Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

2 PhD in Economics, Allameh Tabataba'i University, Tehran, Iran.

3 Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Abstract

Game theory is based on assumptions about players' preferences and their mutual expectations about the behavior of others. From this set of assumptions, game theorists make predictions about the outcomes of games and the interactions between players. The basis of this theory was analyzed by Von Neumann, J., & Morgenstern; O. (1944) in a book entitled "Theory of Games and Economic Behavior" and then developed by John Nash between 1950 and 1953. In contrast, ethics is a normative discipline that arises from reflection on behavior and moral attitudes, and the relationship between the ethical approach and game theory is considered two emerging areas of research and study in the social sciences and humanities. The application of game theory to ethics dates back to 1954 when the Theory of games as a tool for moral philosophy was an inaugural lecture delivered in Cambridge on 2 December 1954.
Two fundamental concepts in game theory and ethics relate to altruistic (sacrificing) behaviors or preferences or behaviors based on self-interest. However, within the framework of the ethical approach, utilitarian preferences are known as the egoistic or individual rationality approach, and altruistic behavior is known as the other-oriented or group rationality approach. The concepts of self-interest and altruism are at the center of a variety of philosophical and social debates, and their roots go back to the sophists and philosophers of ancient Greece, who considered the "self" to be the center of ethical issues.
 Method: One of the important concepts in game theory when modeling socio-economic behavior and human interactions is the concept of Nash equilibrium, which was founded by John Nash (1950 and 1951). This equilibrium is considered a solution concept in a non-cooperative game and in the economic literature this concept corresponds to the self-interest perspective which corresponds to the selfish approach or moral utilitarianism based on Adam Smith's view about the self-interest approach.
Definition 1: The strategy index s^*=(s_1^*,….,s_n^* ) is a Nash equilibrium of G if and only if, for all players and i∈N and all s_i ∈ S_i,
u_i (s^* )≥u_i (s_i,s_(-i)^* )
While the Nash equilibrium is based on egoism or individualism i.e. each player aims to maximize his payoff, the Berg equilibrium is based on altruism i.e. each player aims to maximize the payoff of all other players.
Definition 2: A strategy profile s^*=(s_1^*,….,s_n^* ) is a leaf equilibrium of G if and only if, for all players i∈N and all s_(-i) ∈ S_(-i),
u_i (s^* )≥u_i (s_i^*,s_(-i) )
On the other hand, a modified logistic function was used to design the game between the two policymakers and to reflect the interdependence between economic growth and inflation on the one hand and macroeconomic policy instruments including monetary and fiscal policies on the other. The logistic basis function can be represented in the following form:
(1) f(x)=k/(1+θe^(-φ(x-x_0)) )
where k represents the maximum value of the curve and φ is the logistic growth rate and the slope of the curve. Also, in this equation, when θ>0, the function is uniform, and on the other hand, the range of changes of the function is the interval [0,k].
Results: Therefore, in this study, we analyzed the utilitarian and altruistic perspectives within the framework of game theory literature and the ethical approach, and we seek to answer the question of which of these two perspectives can bring greater social benefits to the entire society. However, examining the equilibrium in some famous games shows that the Berg equilibrium, which also confirms the golden rule in ethics, can bring higher social utility and welfare to the whole society, which is to Islamic views on the ethical approach. By examining the Nash equilibrium and the Berg equilibrium, it can be shown that in this two-policy game, the Nash equilibrium is where the central bank adopts a contractionary monetary policy strategy and the government adopts a contractionary fiscal policy, and hence the inflation rate is 0.0934 and economic growth is 0.0817. On the other hand, in the Berg equilibrium, it is where the central bank adopts a contractionary monetary policy and the government adopts an expansionary fiscal policy, and hence inflation is 0.0928 and economic growth is 0.0802.
Discussion and Conclusion: Over the past centuries, the principle of self-interest, which is derived from Adam Smith's perspective, has been proposed as a moral and rational principle in individual and collective decision-making, and the Nash equilibrium was also proposed by John Nash following this perspective, in which each player, based on personal interest and utility, is trying to achieve the best outcome against his opponent, which is also referred to as the perspective of individual rationality or egoism in ethics. However, studies have shown that pursuing personal interest does not lead to achieving the highest utility and outcome, and hence a balance sheet known as the altruistic or altruistic equilibrium has been introduced, which is placed opposite the Nash equilibrium. Also, from the ethical perspective, this
 



 


 
 



 
 
 
 
type of balance is known as group rationality or others. In Islamic perspectives, great emphasis has been placed on altruistic, altruistic, and altruistic behaviors. Therefore, in this study, we examined the concept of Nash equilibrium and Berg equilibrium in some important and applied games in the humanities that have important applications in economics, political science, etc. The results of this research show that in many of these important and famous games, altruistic equilibrium and the pursuit of the golden rule and mutual support between players have positive effects on the welfare of society compared to Nash equilibrium. On the other hand, in this study, within the framework of the logistic function, the game between two monetary and fiscal policymakers was examined from an empirical perspective, and the results show that in Berg equilibrium, that is, in an altruistic game between two policymakers, the level of inflation is stabilized at a lower level than in Nash equilibrium.
Keywords: Game theory, Ethics, Nash equilibrium, Berg equilibrium, Utility
Acknowledgements: In this section, I would like to express my gratitude to the efforts of the executive team and also the esteemed referees of the Iranian Quarterly Journal of Economic Research with an Islamic Approach.
JEL classification: C70, P40

Keywords


  1. افراسیاب‌پور، علی‌اکبر (1389). «اخلاق در مصباح الهدایه». مجله اخلاق، (22): 69-
  2. پویمان، لویی (1378). درآمدی بر فلسفه اخلاق. ترجمه شهرام ارشد نژاد، تهران: گیل.
  3. جمالی، یعقوب و محمدجمال خلیلیان اشکذری (1399). «انفاق، ایثار و مواسات مالی و نقش هریک در توزیع درآمد و ثروت جامعه اسلامی». فصلنامه معرفت، 29(5): 81-
  4. دیلمی، حسن بن محمد (1367). اعلام الدین فی صفات المومنین. تحقیق: موسسه آل البیتb لاحیاء التراث.
  5. سن، آمارتیا (1377). اخلاق و اقتصاد. ترجمه حسن فشارکی. تهران: شیرازه.
  6. عربی، سیدهادی؛ زاهدی‌وفا، محمدهادی؛ رضائی، محمدجواد و مهدی موحدی بکنظر (1395). «نظریه بازی به‌مثابه ابزاری برای فلسفه اخلاق؛ تبیینی تاریخی و تحلیلی انتقادی». فصلنامه اقتصاد اسلامی، 16(63): 91-
  7. متوسلی، محمود و حمید پاداش (1385). «جایگاه نظریه فرا-اقتصاد در تحلیل‌های اقتصادی». فصلنامه پژوهش‌های اقتصادی. 6(1): 93-
  8. محمودی­نیا، داود (1402). نظریه بازی­های مقدماتی (کاربرد در اقتصاد و سایر رشته­ها). جلد اول، رفسنجان: انتشارات دانشگاه ولی‌عصر(عج) رفسنجان.
  9. محمودی­نیا، داود و داود فروتن­نیا (1403). «تعادل نش، برگ و حریصانه در چارچوب بازی ترکیبی بین دو سیاست‌گذار پولی و مالی در فرم نرمال: کاربردی از بازی معمای زندانی». فصلنامه سیاست‌گذاری اقتصادی، 16(32): 262-
  10. محمودی­نیا، داود؛ بخشی دستجردی؛ رسول و سمیه جعفری (1396). «استخراج قاعده بهینه سیاست پولی و مالی در چارچوب نظریه بازی­ها: کاربردی از مدل­های تعادل عمومی پویای تصادفی». فصلنامه نظریه­های کاربردی اقتصاد، 4(4): 143-
  11. مرادی، علی (1397). «بررسی رابطه بین پایگاه اقتصادی -اجتماعی کارکنان و رفتارهای نوع‌دوستانه (موردمطالعه: شرکت نفت کرمانشاه)». فصلنامه توسعه اجتماعی، 12(4): 79-
  12. یونسی، حمیدرضا؛ فیضی، زهرا و لیلا خسروی‌مراد (1401). «مفهوم قرآنی ایثار و کارکرد آن در نظم اجتماعی سنتی و مدرن». پژوهشنامه قران و حدیث، (31): 325-
  13. Afrasiyabpour, A. (2010). Ethics in Misbah Al-Hidayah. Applied Ethics Studies, 6(22), 69-93. [In Persian]
  14. Alfano, M., Rusch, H., & Uhl, M. (2018). Ethics, Morality, and Game Theory. Games, 9(2), 20. doi: 10.3390/g9020020.
  15. Alger, I., & Weibull, J. (2017). Strategic Behavior of Moralists and Altruists. Games, 8, 38. doi: 10.3390/g8030038.
  16. Arabi, S. H., Zahedi Vafa, M., Rezaei, M., & Movahedi Beknazar, M. (2016). Game Theory as a Tool for Moral Philosophy; a Historical Explication and a Critical Analysis. Islamic Economics, 16(36), 91-116. [In Persian]
  17. Berge, C. (1957). Théorie générale des jeux à n personnes [General theory of n-person games]. Paris: Gauthier-Villars.
  18. Binmore, Kenneth G. (1994). Playing fair: Game Theory and the Social Contract. Cambridge, Mass., London: The MIT Press.
  19. Borissov, K., Pakhnin, M., & Wendner, R. (2023). Cooperating with yourself. CEPET 2022 Workshop.
  20. Braithwaite, R. B. (1954). Theory of Games as a Tool for the Moral Philosopher. An Inaugural Lecture Delivered in Cambridge on 2 December 1954. Cambridge University Press: Cambridge, UK: ISBN 9780521043076.
  21. Carmichael, F. (2005). A Guide to Game Theory. Harlow: Prentice Hall
  22. Chakravarty, S.R., Mitra, M., & Sarkar, P. (2015). A Course on Cooperative Game Theory. Cambridge University Press, Cambridge.
  23. Charnbedin, J. R. (1989). Ethics and Game Theory. ETHICS & INTERNATIONAL AFFAIRS, 3, 261-276.
  24. Colman, A. M., Korner, T.W., Musy, O., & Tazda, T. (2011). Mutual support in games: some properties of Berge equilibria. Journal of Mathematical Psychology, 55(2), 166–175.
  25. Corley, H. W. (2017). Normative Utility Models for Pareto Scalar Equilibria in n-Person, Semi-Cooperative Games in Strategic Form. Theoretical Economics Letters, 7, 1667-1686.
  26. Courtois, P., Nessah, R., & Tazdait, T. (2015). How to play games? Nash versus Berge behaviour rules. Economics & Philosophy, 31(1), 123-139.
  27. Dailami, H, (1988). Religious media in the characteristics of believers. Qom: Al-Bayt Foundation. [In Persian]
  28. Deng, x., & Deng, J. (2015). A Study of Prisoner’s Dilemma Game Model with Incomplete Information. Mathematical Problems in Engineering.

http://dx.doi.org/10.1155/2015/452042.

  1. Diacon, P. E. (2014). Pro-Social Behaviours: Between Altruism and Self-interest. ACTA UNIVERSITATIS DANUBIUS. 10(5), 68-80.
  2. Dixit, A., Skeath, S., & Reiley, D. (2015). Games of strategy. W. Norton & Company. Fourth edition.
  3. Espinola-Arredondo, A., & Muñoz-Garcia, F. (2023). Game Theory: An Introduction with Step by-Step Examples 1st ed. Palgrave Macmillan.
  4. Gauthier, D. P. (1986). Morals By Agreement. Oxford: Clarendon Press.
  5. Holmes, J., Miller, D., & Lerner, M. (2002). Committing Altruism under the Cloak of Self-Interest: The Exchange Fiction. Journal of Experimental Social Psychology, 38, 144–151.
  6. Jamali, Y., & Khalilian Ashkazari, M. (2019). Spending, Sacrifice, and Financial Compassion and the Role of Each in the Distribution of Income and Wealth in Islamic Society. Marifat, 29(5), 81-90. [In Persian]
  7. Jencks, C. (1990). Varieties of altruism. In J. J. Mansbridge (Ed.), Beyond self-interest. University of Chicago Press.
  8. Joseph, J. (2015). Self-interest and Altruism: Pluralism as a Basis for Leadership in Business. Business and Management Studies, 1(2), 106-114.
  9. Larbani, M., & R. Nessah. (2008). A note on the existence of Berge and Berge-Nash Equilibria. Mathematical Social Sciences, 55, 258–271.
  10. Lindbeck, A., Weibull, J. (1988). Altruism and Time Consistency—The Economics of Fait Accompli. Political Econ, 96, 1165–1182.
  11. Mahmoudinia, D. (2023). Introductory game theory (Application in Economics and other fields), First Volume. Vali-e-Asr University of Rafsanjan. [In Persian]
  12. Mahmoudinia, D., & Foroutannia, D. (2025). An analysis of Nash, Berge, and Greedy equilibrium in the context of a mixed game involving monetary and financial policymakers in normal form: An application of the prisoner’s dilemma. The Journal of Economic Policy, 16(32), 262-306. [In Persian]
  13. Mahmoudinia, D., Bakhshi Dastjerdi, R., & Jafari, S. (2018). Extraction of Optimal Fiscal and Monetary Policy Rules in Framework of Game Theory: Application of Dynamic Stochastic General Equilibrium Model. Quarterly Journal of Applied Theories of Economics, 4(4), 143-174. [In Persian]
  14. Maynard Smith, J. (1982), Evolution and the Theory of Games, Cambridge University Press, Cambridge and New York.
  15. Moradi, A. (2018). The Survey of Relationship between Staffs Economic-Social Position and Altruism Behaviors (Case Study: Kermanshah Oil Corporation). Social Development, 12(4), 79-112. [In Persian]
  16. Motavasali, M., & Hamid, B. (2006). The Place of Meta-Economic Theory in Economic Analyses. Quarterly Journal of Economic Research, 6(1), 93-119. [In Persian]
  17. Nash, J. F. (1950). The bargaining problem. Econometrica, 18,155-162.
  18. Pojman, L. (2006). Ethics: Discovering Right and Wrong. Wadsworth Publishing Company. [In Persian]
  19. Russell, B. (1959). Common sense and nuclear warfare. London: Allen & Unwin.
  20. Salukvadze, M. E., & Zhukovskiy, V. I. (2020). The Berge Equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics.

https://link.springer.com/book/10.1007/978-3-030-25546-6

  1. Sawicki, P., Pykacz, J., & Bytner, P. (2019). Berge equilibria in n-person 2-strategy games. Computer Science and Game Theory.

https://doi.org/10.48550/arXiv.1904.08228

  1. Sen, A. (1991). On Ethics and Economics. Wiley-Blackwell.
  2. Smith, J. M., & Price, G. (1973). The logic of animal conflict. Nature, 246, 15
  3. Stawska, J., Malaczewski, M., & Szymańska, A. (2019). Combined monetary and fiscal policy: the Nash Equilibrium for the case of noncooperative game. Economic Research-Ekonomska Istraživanja, 32(1), 3554-3569.
  4. Von Neumann, J. & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press, Princeton.
  5. Wilson, D. R., & Evans, C. S. (2008). Mating success increases alarm-calling effort in male fowl, Gallus gallus. Animal Behavior, 76, 2029–2035.
  6. Woroniecka-Leciejewicz, I. (2015). Equilibrium strategies in a fiscal-monetary game: a simulation analysis. Operation research and decision. DOI: 10.5277/ord150205
  7. Younesi, H., Feizi, Z., & Khosravi Morad, L. (2023). Quranic Concept of Self-Sacrifice and its Function in Traditional and Modern Social Order. Pazhouhesh Name-ye Quran va Hadith Journal, 16 (31), 325-349. [In Persian].
  8. Zapata, A., Mármol, A. M., & Monroy, L. (2024). Berge equilibria and the equilibria of the altruistic game. TOP, 32, 83-105.
  9. Zhukovskii, V. I. (1985). In P. Kenderov (Ed.), Mathematical methods in operations research, Matematiceskie metody v issledovanii operacij [Some problems of nonantagonistic differential games] (pp. 103–195). Sofia: Bulgarian Academy of Sciences.