Evaluation of a Multi-Factor Asset Pricing Model for Predicting Stock Returns in the Iranian Capital Market

Authors

1 PhD Student,Department of Financial Managment,ShQ.C.,Islamic Azad University, Shahr-e Qods,Iran.

2 Assistant Professor, Department of Financial Management, ShQ.C., Islamic Azad University, Shahr-e Qods, Iran

3 Assistant Professor, Department of Mathematics, ShQ.C., Islamic Azad University, Shahr-e Qods, Iran

4 Assistant Professor, Department of Accounting, ShQ.C., Islamic Azad University, Shahr-e Qods, Iran

Abstract

Extended Abstract
 
Introduction and Objectives: The primary objective of this research is to evaluate the efficacy of multi-factor models in predicting stock returns in the Iranian capital market. To this end, the paper aims to examine the role of diverse factors—such as firm size, book-to-market ratio, profitability, and investment policies—in explaining stock returns. By comparing these models to single-factor models, the study seeks to determine their capability in explaining return behavior within the specific conditions of the Iranian market. Accurate prediction of stock returns can provide investors, financial managers, and economic policymakers with a more precise analytical tool, thereby improving the decision-making process.
Asset pricing models have been a central focus in financial studies, with numerous efforts dedicated to enhancing their explanatory and predictive power. The first major effort in this area was the single-factor Capital Asset Pricing Model (CAPM). Despite its historical importance and widespread application, CAPM was unable to explain all variations in stock returns. This limitation led researchers to develop multi-factor models. These models incorporate additional factors beyond the market factor, such as fundamental firm characteristics and economic conditions, to increase predictive power and explanatory capability.
The capital market, as a main pillar of the financial system, faces severe fluctuations, including structural risks and susceptibility to macroeconomic developments. In this context, reliance on multi-factor models can lead to a deeper understanding of investment risks and opportunities, in addition to increasing the accuracy of stock return predictions. From an applied perspective, this is an undeniable necessity.
Methodology:This paper adopts an exploratory approach to data collection and is designed as a descriptive-correlational survey. In terms of purpose, it is classified as fundamental research. The research data is gathered based on real stock market information, including financial statements, audit reports, and data from official databases of the Tehran Stock Exchange.
The statistical population of the study consists of all companies listed on the Tehran Stock Exchange, totaling approximately 550 companies. This population was examined over a 14-year period from 2009 to 2023 (1388 to 1402 in the Persian calendar). To increase the data volume and improve the accuracy of the analysis, each fiscal year was divided into two six-month periods to track changes in stock returns and their influencing factors in greater detail.
Despite certain limitations and inconsistencies in the available company data, specific criteria were established for sample selection. Ultimately, using a systematic elimination method, a sample of 130 companies was selected for which complete and reliable data was available.
For data analysis, the data was organized and interpreted in line with the research objectives using Eviews 10 software.
Results:Based on the results of descriptive statistics tests, various financial, economic, stock market, corporate governance, and auditing variables show different patterns of stability and fluctuation. Stock returns were relatively stable with less volatility, while financial structure and liquidity levels experienced greater variability.
In the stock market domain, market value and liquidity exhibited the highest dispersion, indicating high market risk and volatility. In contrast, the market growth rate showed relative stability. Among the economic variables, inflation had the highest variability and acted as an influential variable on other indicators. Furthermore, in corporate governance, the number of board members showed more fluctuation, while ownership structure and institutional ownership demonstrated relative stability.
On the other hand, variables related to financial reporting quality and auditing had minor changes, indicating the existence of standard frameworks and procedures in this area. Due to the selection of a panel data model, the Hausman test was conducted to choose between a fixed effects model and a random effects model. The results of the Chow test for each model showed that the probability error level of this test was less than 5%, therefore confirming the fixed effects method.
In the regression analysis, the results indicate that most of the studied variables have a positive and significant relationship with stock returns. Variables such as audit process efficiency (coefficient: 0.8981), liquidity level (coefficient: 0.8978), and the market factor (coefficient: 0.8122) had a high impact, demonstrated by a t-statistic above 3 and a significance level below 0.005. Financial risk ratio and auditor expertise also had a significant effect on stock returns. The model’s coefficient of determination (R²) of 0.944 indicates its high ability to explain variations in stock returns, and the adjusted R² of 0.984 suggests the model’s acceptable predictive power.
Discussion and Conclusion:Based on the paper’s results, multi-factor asset pricing models provide an effective framework for predicting stock returns in the Iranian capital market. Unlike single-factor models like CAPM, which only consider market risk, the findings show that stock returns are influenced by a combination of financial, market, economic, governance, and auditing factors.
In the financial dimension, indicators such as capital structure, liquidity, net profit, return on assets ratio, and debt-to-asset ratio have a significant effect on returns, highlighting the importance of financial health and resource management. In the market domain, variables such as market return, growth opportunities, and book-to-market ratio, with positive and significant coefficients, confirm the role of market forces and investor expectations. From an economic perspective, factors such as the inflation rate, economic growth, and cost changes also highly influence stock performance, revealing the importance of macroeconomic conditions.
Furthermore, corporate governance structure—including board independence, ownership structure, and institutional ownership—increases transparency and reduces risk. Additionally, financial reporting quality and auditor independence are directly linked to investor confidence and improved returns.
Overall, the investigations show that generalized multi-factor models have higher explanatory power than traditional models and, by combining diverse variables, enable more accurate prediction of stock behavior. This comprehensive approach can significantly assist managers, investors, and policymakers in making informed financial decisions aligned with the stock market.

Keywords


منابع
آریان‌مند، داریوش، وحدت طاهر، امیراسماعیل، و تافته، فرشته (1403). تأثیر برنامه‌ریزی مالیات شرکت‌ها بر بازده سهام در بازار سرمایه، هشتمین کنفرانس بین‌المللی مدیریت، حسابداری، اقتصاد و بانکداری، 1-23.
https://civilica.com/doc/2148074
بهاالدینی، رضا، و شیبانی تذرجی، عباس (1403). بررسی اثر بازار رقابت محصول و بازده سهام بر مدل قیمت‌گذاری دارایی‌های سرمایه‌ای، پانزدهمین کنفرانس بین‌المللی حسابداری، مدیریت و نوآوری در کسبوکار، تهران، 1-24.
https://civilica.com/doc/2185613
بهمنی، مریم، پورزندی، محمدابراهیم، و مینویی، مهرزاد (1403). پیش‌بینی بازدهی سهام در سطح شرکت: کاربردی از پیوند مدل‌های قیمت‌گذاری دارایی و عوامل اقتصادی. فصلنامه مهندسی مالی و مدیریت اوراق بهادار، 85(15)، 1- 20.
شیرمردی، سیده‌نرجس،  صامتی، مجید، و شریفی رنانی، حسین (1403). نقش شوک‌های نااطمینانی مالی، مدل پنج عاملی فاما_ فرنچ و مومنتوم در بازار سرمایه و تأثیرات آن بر بازده سهام، پژوهشهای حسابداری مالی و حسابرسی، (16)61، 24-50.
https://doi.org/10.30495/faar.2024.709442
طاهری نیا، مسعود، و تقی ملایی، مصطفی، و عبدی، محمد (1400). تأثیر ناهنجاری‌های بازار سرمایه بر بازده سهام شرکت‌های پذیرفته شده در بازار بورس اوراق بهادار تهران، هفتمین کنفرانس ملی مطالعات مدیریت در علوم انسانی، تهران، 1-18.
https://civilica.com/doc/1475174
فرزین‌فر، علی‌اکبر (1398). ارزیابی بازده و ارزش در معرض خطر (VaR) در دارایی‌های سرمایه‌ای (سهام) مبتنی بر تلفیق الگوی چندعاملی قیمت‌گذاری و تابع جریمه، مهندسی مالی و مدیریت اوراق بهادار، 41(10)، ص69- 89.
قوت دین، محمدسعید (1401). تأثیر عدم اطمینان بازار سرمایه و نوسانات ارتباط با مؤسسات مالی بر بازده سهام در شرکت‌های بورس اوراق بهادار تهران، نخستین کنفرانس ملی تحول‌گرایی در مدیریت، شیراز. 1-13.
https://civilica.com/doc/1525205
کردلوئی، حمیدرضا، میرآبی، وحیدرضا، طاهرپورکلانتری، هادی، رحمتی غفرانی، یلدا، و نقشینه، نادر (1398). فلسفه علم و روش‌شناسی تحقیق. ویرایش اول، تهران: شهرآشوب.
کیامهر، علی، جنانی، محمدحسن، و همت‌فر، محمود (1399). تبیین نقش ناهنجاری‌های بازار سهام در قیمت‌گذاری دارایی‌های سرمایه‌ای. اقتصاد مالی، 14(53)، 212-193.
https://doi/www.sid.ir/paper/387027/fa
محقق، عارفه، بایسته، علی و میرسلیمانی، فاطمه (1403). رابطه بین ریسک سقوط سهام، سرمایه‌گذاران نهادی و بازده سهام شرکت‌های فعال در بازار سرمایه، سیزدهمین کنفرانس بین‌المللی پژوهش‌های نوین حسابداری، مدیریت و علوم انسانی در هزاره سوم، تهران، 1-13.
https://civilica.com/doc/2205531
محمدتبارکاسگری، فوزیه، دهقان، عبدالمجید، و هاشمی فراشا، سیدابوالقاسم (1399). بررسی رابطه بین ویژگی‌های شرکتی و ریسک سیستماتیک در بورس اوراق بهادار تهران با استفاده از مدل سه عاملی فاما و فرنچ. راهبرد مدیریت مالی، 8(29)، 177-196.
https://doi.org/10.22051/jfm.2020.21147.1722
 
مشایخ، شهناز، و اسفندی، خدیجه (1400). ارزیابی و مقایسه کارایی مدل‌های قیمت‌گذاری دارایی‌ها با استفاده از معیارهای متفاوت تشکیل پرتفوی. حسابداری مالی، 7(26)، 81-52.
مشهدی، انیسه، دموری، داریوش، و انصاری سامانی، حبیب (1403). قیمت‌گذاری درماندگی مالی شرکت بر مبنای مدل فاما و فرنچ در شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران، 17-126.
https://civilica.com/doc/2017527
نادری‌بنی، رحمت‌الله، عرب‌صالحی، مهدی، و کاظمی، ایرج (1398). آزمون ناهنجاری‌های حسابداری مدل سه عاملی فاما و فرنچ در سطح شرکت با استفاده از رویکرد بیز سلسله مراتبی و شبیه‌سازی مونت‌کارلو زنجیر مارکوفی. پژوهشهای حسابداری مالی، 11(3)، 97-116.
ناهیدی امیرخیز، محمدرضا (1401). تأثیر نامتقارن نوسان نرخ ارز بر بازده سهام در بازار سرمایه ایران. فصلنامه اقتصاد محاسباتی، 1(2)، 1-21.
https://journals.iau.ir/article_692438.html
هادیان، ریحانه، هاشمی، سیدعباس، و صمدی، سعید (1402). ارزیابی تأثیر عامل محدودیت مالی بر توان تبیین بازده سهام توسط مدل‌های سه عاملی فاما و فرنچ، چهار عاملی کارهارت و پنج عاملی فاما و فرنچ. فصلنامه حسابداری مالی 9(34)، 1-34.
https://doi.org/10.52547/jfmp.9.28.117 
 
References
Anuno, F., Madaleno, M., & Vieira, E. (2023). Using the Capital Asset Pricing Model and the Fama–French Three-Factor and Five-Factor Models to Manage Stock and Bond Portfolios: Evidence from Timor-Leste. Journal of Risk and Financial Management, *16*(11), 480. https://doi.org/10.3390/jrfm16110480
Aryān Mand, D., Vaḥdat Tāher, A., & Ṭafteḥ, F. (2024). The impact of corporate tax planning on stock returns in the capital market. In Proceedings of the 8th International Conference on Management, Accounting, Economics and Banking (pp. 1–23). Civilica. https://civilica.com/doc/2148074
Bahā’aldini, R., & Sheybāni Tazarji, A. (2024). Investigating the effect of product market competition and stock returns on capital asset pricing model. In Proceedings of the 15th International Conference on Accounting, Management and Innovation in Business (pp. 1–24). Civilica. https://civilica.com/doc/2185613
Bahmani, M., Purzandi, M. E., & Minuyi, M. (2024). Forecasting stock returns at the firm level: An application of linking asset pricing models and economic factors. Quarterly Journal of Financial Engineering and Securities Management, *15*(85), 1–20.
Candemir, I., & Karahan, C. C. (2024). Testing asset pricing models with individual stocks: An instrumental variables approach. Borsa Istanbul Review. https://doi.org/10.1016/j.bir.2024.05.005
Chen, X., & Gao, N. R. W. (2020). Revisiting Fama–French’s asset pricing model with an MCB volatility risk factor. The Journal of Risk Finance, *21*(3), 233-251. https://doi.org/10.1108/JRF-07-2019-0130
Coale, J. M., & Anistratov, D. Y. (2024). A Variable Eddington Factor Model for Thermal Radiative Transfer with Closure Based on Data-Driven Shape Function. Journal of Computational and Theoretical Transport, *53*(2), 153-172. https://doi.org/10.1080/23324309.2024.2327992
Dai, Z., Li, T., & Yang, M. (2022). Forecasting stock return volatility: the role of shrinkage approaches in a data‐rich environment. Journal of Forecasting, *41*(5), 980-996. https://doi.org/10.1002/for.2841
Fama, E. F., & French, K. R. (2015). International Tests of a Five-Factor Asset Pricing Model. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.2622782
Farzinfar, A. A. (2019). Evaluation of return and value at risk (VaR) in capital assets (stocks) based on the integration of multi-factor pricing model and penalty function. Financial Engineering and Securities Management, *10*(41), 69–89.
Farzinfar, A., Jahāngirniyā, H., Qodrati, H., & Jamkarāni, R. (2019). The integration of multi-factor model of capital asset pricing and penalty function for stock return evaluation. Advances in Mathematical Finance and Applications, *4*(2), 43–60. http://dx.doi.org/10.22034/amfa.2019.584793.1180
Feng, G., He, J., Polson, N. G., & Xu, J. (2024). Deep learning in characteristics-sorted factor models. Journal of Financial and Quantitative Analysis, *59*(7), 3001-3036. http://dx.doi.org/10.2139/ssrn.3243683
Giglio, S., Kelly, B., & Xiu, D. (2022). Factor models, machine learning, and asset pricing. Annual Review of Financial Economics, *14*(1), 337-368. https://doi.org/10.1146/annurev-financial-101521-104735
Hādiān, R., Hāshemi, S. A., & Samadi, S. (2023). Evaluating the effect of financial constraint factor on the explanatory power of stock returns by three-factor Fama and French, four-factor Carhart and five-factor Fama and French models. Financial Accounting Quarterly, *9*(34), 1–34. https://doi.org/10.52547/jfmp.9.28.117
Han, Y., Yang, D., Zhang, C. H., & Chen, R. (2024). CP factor model for dynamic tensors. Journal of the Royal Statistical Society Series B: Statistical Methodology, qkae036. https://doi.org/10.1093/jrsssb/qkae036
Hao, Y., & Dong, F. (2024). Research on Pricing Power of Fama-French Five-factor Model Combined with Trend Factor. International Journal of Multiphysics, *18*(3). https://doi.org/10.2139/ssrn.2622782
He, X., Cong, L. W., Feng, G., & He, J. (2021). Asset pricing with panel trees under global split criteria. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3949463
Kiyāmehr, A., Janāni, M. H., & Hemmatfar, M. (2020). Explaining the role of stock market anomalies in capital asset pricing. Quarterly Journal of Financial Economics, *14*(53), 193–212. https://www.sid.ir/paper/387027/en
Kolm, P. N., & Ritter, G. (2021). Factor investing with black–litterman–bayes: incorporating factor views and priors in portfolio construction. Journal of Portfolio Management, *47*(2), 113-126. https://doi.org/10.3905/jpm.2020.1.196
Kordluyi, H. R., Mir’abi, V. R., Tāherpur Kalantari, H., Raḥmati Ghafrāni, Y., & Naghshineh, N. (2019). Philosophy of science and research methodology (1st ed.). Shahrāshub Publications.
Li, Q., Kamaruddin, N., Yuhaniz, S. S., & Al-Jaifi, H. A. A. (2024). Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming. Scientific Reports, *14*(1), 422. https://doi.org/10.1038/s41598-023-50783-0
Lin, P., Ma, S., & Fildes, R. (2024). The extra value of online investor sentiment measures on forecasting stock return volatility: A large-scale longitudinal evaluation based on Chinese stock market. Expert Systems with Applications, *238*, 121927. http://dx.doi.org/10.2139/ssrn.4460034
Lopez-Lira, A., & Tang, Y. (2023). Can chatgpt forecast stock price movements? return predictability and large language models. arXiv preprint arXiv:2304.07619. https://doi.org/10.48550/arXiv.2304.07619
Mashāyekh, Sh., & Esfandi, Kh. (2021). Evaluating and comparing the efficiency of asset pricing models using different criteria for portfolio formation. Quarterly Journal of Financial Accounting Research, *7*(26), 52–81. https://www.noormags.ir/view/fa/articlepage/1495920/
Mashhadi, A., Demuri, D., & Anṣāri Samāni, H. (2024). Pricing of financial distress of a company based on the Fama and French model in companies listed on the Tehran Stock Exchange. In Proceedings of the 15th International Conference on Accounting, Management and Innovation in Business (pp. 117–126). Civilica. https://civilica.com/doc/2017527
Moḥammad Tabarkasgari, F., Dehghān, A., & Hāshemi Farāsha, S. A. (2020). Investigating the relationship between corporate characteristics and systematic risk in Tehran Stock Exchange using the Fama and French three-factor model. Financial Management Strategy, *8*(29), 177–196. https://doi.org/10.52547/jfmp.9.28.65
Mohaqqeq, A., Bāyesteh, A., & Mirsoleymāni, F. (2024). The relationship between stock crash risk, institutional investors and stock returns of companies active in the capital market. In Proceedings of the 13th International Conference on New Research in Accounting, Management and Humanities in the Third Millennium. Tehran, Iran: Civilica. (pp. 1–13). https://civilica.com/doc/2205531
Naderi Boni, R., ‘Arabṣalehi, M., & Kāzemi, I. (2019). Testing accounting anomalies of the Fama and French three-factor model at the firm level using the hierarchical Bayes approach and Markov chain Monte Carlo simulation. Quarterly Journal of Financial Accounting Research, *11*(3), 97–116. https://far.ui.ac.ir/article_24142.html
Nāhedi Amirkhiz, M. R. (2022). The asymmetric impact of exchange rate fluctuations on stock returns in the Iranian capital market. Quarterly Journal of Computational Economics, *1*(2), 1–21. https://journals.iau.ir/article_692438.html
Prasad, S. S., Verma, A., & Prasad, S. (2025). Analysing asset pricing models in the Indian stock market: a comprehensive empirical study. Afro-Asian Journal of Finance and Accounting, *15*(1), 1-18. https://doi.org/10.1504/AAJFA.2025.143509
Qiao, G., Bi, Y., Cui, W., & Wang, Y. (2025). Multiple Implied Volatility Indices Predictions Under Garch-Midas Model with Economic Policy Uncertainty Indices. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4925964
Qovāt al-Din, M. S. (2022). The effect of capital market uncertainty and fluctuations in relations with financial institutions on stock returns in Tehran Stock Exchange companies. In Proceedings of the First National Conference on Transformational Management. Shiraz, Iran: Civilica. (pp. 1–13). https://civilica.com/doc/1525205
Rahmi, N., Samsudin, H., & Ahmat, N. (2025). The Dynamic Response of the Green Stock Market to External Economic Policy Uncertainty: The Case of Indonesia. International Journal of Energy Economics and Policy, *15*(2), 360-369. https://doi.org/10.32479/ijeep.18254
Shirmardi, S. N., Sameti, M., & Sharifi Renāni, H. (2024). The role of financial uncertainty shocks, the Fama-French five-factor model and momentum in the capital market and its effects on stock returns. Financial Accounting and Auditing Research, *16*(61), 24–50. https://doi.org/10.30495/faar.2024.709442
Tāheriniyā, M., Taqhimulā’i, M., & ‘Abdi, M. (2021). The effect of capital market anomalies on stock returns of companies listed on the Tehran Stock Exchange. In Proceedings of the Seventh National Conference on Management Studies in the Humanities. Tehran, Iran: Civilica. (pp. 1–18). https://civilica.com/doc/1475174
Wang, C. (2024). Stock return prediction with multiple measures using neural network models. Financial Innovation, *10*(1), 72-86.