Examining Different Models for Rating Insurance Companies and Selecting an Appropriate Model for Implementation in Iran’s Insurance Industry

Authors

1 . Associate Professor of Economics, Faculty of Economics and Administrative Sciences, University of Qom, Qom, Iran

2 . Master’s student in Islamic Banking, University of Qom, Qom, Iran

3 . Assistant Professor, Department of Modern Insurance Technologies, Insurance Research Center, Tehran, Iran.

Abstract

Extended Abstract
 
Introduction and Objectives: The insurance sector, as a cornerstone of a nation’s financial system, is essential for fostering economic stability, mitigating uncertainties, and supporting investment and production activities. In recent years, the rapid expansion of private insurance companies and intensifying competition have underscored the need for a precise, reliable, and data-driven rating system. Currently, evaluation processes are fragmented and limited in scope, impeding informed decision-making by policyholders, regulatory authorities, and policymakers. This study aims to design a comprehensive and localized rating model that integrates financial, operational, and human capital indicators with modern multi-criteria decision-making (MCDM) techniques. By filling a critical gap in the literature on Iran’s insurance sector, the proposed model enhances transparency, promotes competition, and improves efficiency. Given the emphasis in national upstream documents—including the General Policies of the Resistance Economy and principles of Islamic Finance—developing such a performance evaluation model contributes to financial health, mitigates systemic risks, and strengthens insurance functions within an Islamic economic framework.
Research Methodology: A pragmatic, mixed-method approach was adopted following Saunders’ research onion model. Initially, 22 performance indicators were extracted from domestic and international literature, regulatory reports, and the Central Insurance of Iran’s statistical yearbook, across financial, operational, and growth & learning/customer-oriented dimensions. The fuzzy Delphi method, informed by 25 industry experts, refined the indicators to 17 based on the fuzzy threshold. In the second stage, indicator weights were computed using the Ordinal Priority Approach (OPA) implemented in LINGO software, ensuring consistency based on expert preferences. In the third stage, data from 28 insurance companies—including state-owned, private, and free-zone entities—were collected. Three MCDM methods (PROMETHEE II, SECA, and MARCOS) were applied, reflecting diverse analytical foundations (pairwise comparison, outranking, distance from ideal and anti-ideal solutions). The geometric mean of the three methods’ outputs was used to derive a stable and consolidated ranking.
Results: The fuzzy Delphi process eliminated five indicators, leaving 17 as the foundation of the rating model. OPA weights identified “Loss Ratio” as the most critical indicator, followed by “Number of Issued Policies,” “Market Share of Premiums,” and “Growth Rate of Issued Premiums,” highlighting that claims management, sales efficiency, and competitive positioning are decisive for company performance. Ranking results differed among the MCDM methods: PROMETHEE II ranked Iran, Asia, and Dana insurance companies highest; SECA ranked Iran, Alborz, and Parsian at the top; MARCOS highlighted Ta’avon, Hekmat Saba, and Middle East companies. The geometric mean reconciled discrepancies, yielding a final ranking with Iran Insurance Company first, followed by Alborz, Parsian, Dana, and Pasargad. Smaller and newer companies exhibited weaker performance, particularly in loss ratio and market share indicators.
Discussion and Conclusion: The findings indicate that a multi-dimensional, comprehensive rating approach offers a more accurate assessment of insurance company performance. Loss ratio emerges as a pivotal criterion, emphasizing efficiency in claims management. Market share and policy issuance indicators underscore the importance of marketing, sales networks, and portfolio management. Divergence across MCDM methods suggests that reliance on a single method can lead to biased conclusions; combining multiple approaches and employing the geometric mean ensures stability and reliability. From a policy perspective, this framework assists the Central Insurance of Iran in monitoring solvency, identifying high-risk companies, and fostering healthy market competition. For companies, it provides a roadmap to assess strengths, address weaknesses, and enhance risk management. Aligned with Islamic economic principles emphasizing transparency, justice, and efficiency, this model promotes public trust and financial stability. Future studies should incorporate policyholder satisfaction, digital service quality, corporate governance, and innovation, leveraging data-driven techniques such as machine learning to explore dynamic performance trends.
Acknowledgments: The authors express sincere gratitude to the editors and reviewers of the Journal of Islamic Economic Essays for their valuable guidance in enhancing the scientific quality of this article.
Conflict of Interest: The authors declare no scientific, financial, or organizational conflicts of interest.

Keywords


منابع
حسین‎نژاد، اعظم (۱۴۰۱). رتبه‎بندی شرکت‎های بیمه با استفاده از روش‎های برنامه‎ریزی آرمانی و تاپسیس اصلاح‎شده. پایان‌نامه کارشناسی ارشد، موسسه آموزش عالی سهروردی.
خلیلی، بهزاد (۱۴۰۰). رتبه‎بندی شعب بیمه با رویکرد ترکیبی کارت امتیازی متوازن و تکنیک‎های تصمیم‎گیری چند شاخصه فازی.(FMADM) پایان‌نامه کارشناسی ارشد، دانشگاه غیردولتی-غیرانتفاعی خاتم.
سلامات، کاظم، و نظری، فریبا (1401). شناسایی و رتبه‌‌بندی ویژگی‌‌های مناسب نظام مدیریت محتوای پورتال شرکت بیمه ایران با استفاده از تکنیک تحلیل سلسله مراتبی. پژوهشنامه بیمه، 11(2)، 113-146. doi: 10.22056/ijir.2022.02.04
شمشیرگران، امین (۱۳۹۸). چارچوبی برای رتبه‎بندی عملکرد شرکت‎های بیمه با بهره‎گیری از فنون تصمیم‎گیری چندشاخصه) مورد مطالعه: شرکت‎های بیمه خصوصی ایران). پایان‌نامه کارشناسی ارشد، دانشگاه قم.
فاضل‎یزدی، علی، و معین‎الدین، محمود (۱۳۹۴). ارزیابی کارایی و رتبه‎بندی صنعت بیمه ایران با استفاده از رویکرد پویای تحلیل پنجره‎ای داده‎ها. مدیریت بهرهوری 9(4)، 131-150.
موسوی، سیده وفا، و کامفیروزی، محمد حسن (۱۴۰۰). ارزیابی عملکرد و رتبه‌بندی شرکت‎های بیمه ایران با استفاده از رویکرد کارت امتیازی متوازن با روش وزن‎دهی آنتروپی شانون و تکنیک ویکورخاکستری. مدیریت فردا، ۱۹(۶۶)، ۹۱-۱۰۴.
یاری، جعفر (۱۳۸۹). ارزیابی و رتبه‎بندی شرکت‎های بیمه در ایران چشم‎اندازها و چالش‎ها، ماهنامه تازههای جهان بیمه، ۲۴(۱۴۴ و ۱۴۵)، ۳۳-۵۰.
References
Akyüz, G., Tosun, Ö., & Aka, S. (2020). Performance evaluation of non-life insurance companies with best-worst method and TOPSIS. International Journal of Management Economics and Business, 16(1), 108–125. https://doi.org/10.17130/ijmeb.700907
Attaei, S., Mahmoodi, M., Feli Zadeh, S., & Li, J. (2020). Ordinal Priority Approach (OPA): A new approach for multi-criteria decision making. Journal of Multi-Criteria Decision Analysis, 27(3), 123–135.
Brans, J. P., & Vincke, P. (1985). A preference ranking organization method: The PROMETHEE method for MCDM. Management Science, 31(6), 647–656.
Fazel-Yazdi, A., & Moein-aldin, M. (2015). Efficiency evaluation and ranking of the Iranian insurance industry using dynamic data envelopment analysis. Productivity Management, 9(4), 131–150. [In Persian]
Gharizadeh Beiragh, R., Alizadeh, R., Shafiei Kaleibari, S., Cavallaro, F., Zolfani, S. H., Bausys, R., & Mardani, A. (2020). An integrated multi-criteria decision making model for sustainability performance assessment for insurance companies. Sustainability, 12(3), 789. https://doi.org/10.3390/su12030789
Hamzeh, A., Banimostafaarab, F., & Atatalab, F. (2022). The rating of insurance companies based on the regulatory indicators using three different scenarios. Journal of Mathematics and Modeling in Finance, 2(2), 1–15.
Hosseinnezhad, A. (2022). Ranking insurance companies using goal programming and modified TOPSIS (Master’s thesis). Sohrvardi Institute of Higher Education. [In Persian]
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decision-making. Journal of Multi-Criteria Decision Analysis, 25(5-6), 317–329.
Khalili, B. (2021). Ranking insurance branches using a combined balanced scorecard and fuzzy multi-criteria decision-making techniques (FMADM) (Master’s thesis). Khatam Non-Governmental and Non-Profit University. [In Persian]
Lunkina, T. I., & Feshchenko, Y. B. (2022). Insurance activity in Ukraine on the example of an insurance company. Modern Economics, 36, 76–82. https://doi.org/10.31521/modecon.V36(2022)-11
Mousavi, S. V., & Kamfirouzi, M. H. (2021). Performance evaluation and ranking of Iranian insurance companies using balanced scorecard approach with Shannon entropy weighting and grey VIKOR technique. Farda Management, 19(66), 91–104. [In Persian]
Pandey, R., Komal, R., & Dincer, H. (2023). Integrated multi-criteria decision-making approaches for insurance company performance ranking. Journal of Multi-Criteria Decision Analysis, 30(4), 245–262.
Rasyid, A. (2023). Insurance company financial performance analysis. Advances in Economics & Financial Studies, 1(2), 103–116. https://doi.org/10.60079/aefs.v1i2.112
Salamat, K., & Nazari, F. (2022). Identifying and ranking suitable features of the content management system of Iran Insurance portal using the analytic hierarchy process. Insurance Research Journal, 11(2), 113–146. https://doi.org/10.22056/ijir.2022.02.04 [In Persian]
Saunders, M., Lewis, P., & Thornhill, A. (2019). Research methods for business students (8th ed.). Pearson.
Seyed Esmaeili, F. S., & Mohammadi, E. (2024). Z-number network data envelopment analysis approach: A case study on the Iranian insurance industry. PLOS ONE, 19(7), e0306876. https://doi.org/10.1371/journal.pone.0306876
Shamshirgaran, A. (2019). A framework for ranking the performance of insurance companies using multi-criteria decision-making techniques: The case of private insurance companies in Iran (Master’s thesis). Qom University. [In Persian]
Sharma, A., Jadi, D. M., & Ward, D. (2018). Evaluating financial performance of insurance companies using rating transition matrices. The Journal of Economic Asymmetries, 18, e00102. https://doi.org/10.1016/j.jeca.2018.e00102
Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231
Yari, J. (2010). Evaluation and ranking of insurance companies in Iran: Perspectives and challenges. Tazehaye Jahan-e Bimeh Monthly, 24(144–145), 33–50. [In Persian]